这是描述信息
CN

EN

imgboxbg

业界动态

通过业界了解我们更多的侧面

搜索
搜索

业界动态

您现在的位置:
首页
/
/
它却被碳化硅氮化镓抢尽了风头,如今将迎来爆发

它却被碳化硅氮化镓抢尽了风头,如今将迎来爆发

  • 分类:业界动态
  • 作者:中国粉体网
  • 来源:搜狐
  • 发布时间:2020-12-11 13:40
  • 访问量:0

【概要描述】时至今日,以碳化硅(SiC)和氮化镓(GaN)为代表的第三代半导体材料得到了极大地关注,它们在较大功率、高温、高压应用领域所发挥的作用也不是传统的硅器件所能比较的。尤其是伴随着新能源、5G等新兴高科技领域对高性能半导体材料的要求日益严格,第三代半导体材料注定会进一步大放异彩。

它却被碳化硅氮化镓抢尽了风头,如今将迎来爆发

【概要描述】时至今日,以碳化硅(SiC)和氮化镓(GaN)为代表的第三代半导体材料得到了极大地关注,它们在较大功率、高温、高压应用领域所发挥的作用也不是传统的硅器件所能比较的。尤其是伴随着新能源、5G等新兴高科技领域对高性能半导体材料的要求日益严格,第三代半导体材料注定会进一步大放异彩。

  • 分类:业界动态
  • 作者:中国粉体网
  • 来源:搜狐
  • 发布时间:2020-12-11 13:40
  • 访问量:0
详情

时至今日,以碳化硅(SiC)和氮化镓(GaN)为代表的第三代半导体材料得到了极大地关注,它们在较大功率、高温、高压应用领域所发挥的作用也不是传统的硅器件所能比较的。尤其是伴随着新能源、5G等新兴高科技领域对高性能半导体材料的要求日益严格,第三代半导体材料注定会进一步大放异彩。

除了碳化硅和氮化镓,近年来,氧化镓(Ga 2 O 3 )也再一次走入了人们的视野,并凭借 比SiC和GaN更宽的禁带,又成为了众多研究者的研究重点。

氧化镓为什么至今才被重视

氧化镓走入大家的视野,为什么要强调“再一次”呢?

实际上,氧化镓在半导体领域的应用并不是一项崭新的技术,在很多年前就有人对其展开了大量的研究,但这种材料原本不是用于功率元件的,最初是计划用于LED(发光二极管)基板等而进行研发的。

但是这些用途的研发与应用规模较小,它的一些“特异功能”似乎有些超前,并无用武之地,再加上它的技术难度高以及散热方面问题突出,在当时看来显然不如开发碳化硅、氮化镓等更具有性价比。

俗话说,三十年河东三十年河西。而随着应用需求的发展愈加明朗,未来对高功率器件的性能要求越来越高,尤其是对超宽禁带半导体材料的迫切需求,这使得人们更深切地看到了氧化镓的优势和前景,相应的研发工作又多了起来,已成为美国、日本、德国等国家的研究热点和竞争重点。

 

氧化镓的性能优势

Ga 2 O 3 是金属镓的氧化物,同时也是一种半导体化合物。其结晶形态截至目前已确认有α、β、γ、δ、ε五种,其中,β结构最稳定。与Ga 2 O 3 的结晶生长及物性相关的研究大部分围绕β结构展开。研究人员曾试制了金属半导体场效应晶体管,尽管属于未形成保护膜钝化膜的简单结构,但是样品已经显示出耐压高、泄漏电流小的特性。在使用碳化硅和氮化镓制造相同结构的元件时,通常难以达到这些样品的指标。

表1:几种半导体材料性能比较

比较了一下 “定量评价功率元件理论性能的指数(性能指数)”,氧化镓是硅的3000倍,是碳化硅的6倍,是氮化镓的3倍。

具体来看,β- Ga2 O3 的带隙很大,达到4.8eV,这一数值为Si的4倍多,而且也超过了SiC的3.3eV及GaN的3.4eV。一般情况下,带隙大的话,击穿电场强度也会很大。β- Ga2 O3 的击穿电场强度估计为8MV/cm左右,达到Si的20多倍,相当于SiC及GaN的2倍以上。

 

氧化镓半导体的价格优势

除了材料性能优异如带隙比碳化硅和氮化镓大,利用 Ga 2 O 3 作为半导体材料的主要原因是其生产成本较低。

功率元件与一般的半导体元件相比,晶圆占据了元件的较大一部分生产成本。晶圆成本(每单位面积)最低的是硅,每平方厘米的晶圆成本不足100日元(约人民币6元)。

而碳化硅晶圆的成本(每平方厘米)为1500多日元(约人民币90元),据说氮化镓的成本会超过4万日元(约人民币2400元)。分别是硅的15倍、400倍。

随着氧化镓晶体生长技术的突破性进展,氧化稼和蓝宝石一样,可以从溶液状态转化成块状(Bulk)单结晶状态。可以通过运用与蓝宝石晶圆生产技术相同的EFG(Edge-defined Film-fed Growth)方法,做出氧化镓晶圆,成熟的生产工艺会大幅度降低生产成本。

 

氧化镓半导体的劣势

目前氧化镓作为半导体材料面临的主要问题是, 氧化镓的低热导率,这在上表中也有所体现,它的热导率仅有0.14W/cm·k。解决办法有两种:热传递自器件沟道往下到通过键合技术所得的高热导率金刚石或AlN衬底以及自沟道往上至器件钝化层顶部高热导率金属热沉。P型掺杂依然是一个巨大的挑战,但从器件角度来看可采用单极器件。其他挑战还包括研制出具有低缺陷密度高可靠的栅介质、更低阻值的欧姆接触、更有效的终端技术比如场版和金属环用来提高击穿电场、更低缺陷密度及更耐压的 Ga2 O3 外延层以及更大更便宜的单晶衬底。在充分考虑并解决了不局限于上述问题,氧化镓功率器件的明天便会大放光彩,为高效能功率器件的选择提供新的方案。

 

氧化镓半导体的市场前景

因为拥有如此多的优势,氧化镓被看作一个比氮化镓拥有更广阔前景的技术。

据市场调查公司--富士经济于2019年6月5日公布的Wide Gap 功率半导体元件的全球市场预测来看,2030年氧化镓功率元件的市场规模将会达到1542亿日元(约人民币92.76亿元),这个市场规模要比氮化镓功率元件的规模(1085亿日元,约人民币65.1亿元)还要大!

 

氧化镓半导体的应用发展趋势

氧化镓作为一种新兴的功率半导体材料,其禁带宽度大于硅,氮化镓和碳化硅,在高功率应用领域的应用优势愈加明显。但这并不意味着氧化镓一定会取代SiC和GaN,后两者可能仍是硅之后的下一代主要半导体材料,他们会在不同的半导体领域发挥自己的独特优势。

氧化镓更有可能在扩展超宽禁带系统可用的功率和电压范围方面发挥作用。而最有希望的应用可能是电力调节和配电系统中的高压整流器,如电动汽车和光伏太阳能系统。但在这之前,仍有很多工作要做。

扫二维码用手机看

热点动态排行榜

亚太6D通信卫星成功发射!
亚太6D通信卫星成功发射!
2020年7月9日20时11分,亚太6D通信卫星在西昌卫星发射中心由长征三号乙运载火箭成功发射。亚太6D通信卫星是一颗地球静止轨道高通量宽带通信卫星,由航天科技集团五院(以下简称五院)通信卫星事业部抓总研制,采用我国自主研发的新一代东方红四号增强型卫星公用平台(DFH-4E平台)建造,发射重量约5550公斤,在轨服务寿命15年。截至目前,五院已研制发射304颗航天器。
查看详情
2020年7月9日20时11分,亚太6D通信卫星在西昌卫星发射中心由长征三号乙运载火箭成功发射。亚太6D通信卫星是一颗地球静止轨道高通量宽带通信卫星,由航天科技集团五院(以下简称五院)通信卫星事业部抓总研制,采用我国自主研发的新一代东方红四号增强型卫星公用平台(DFH-4E平台)建造,发射重量约5550公斤,在轨服务寿命15年。截至目前,五院已研制发射304颗航天器。
它却被碳化硅氮化镓抢尽了风头,如今将迎来爆发
它却被碳化硅氮化镓抢尽了风头,如今将迎来爆发
时至今日,以碳化硅(SiC)和氮化镓(GaN)为代表的第三代半导体材料得到了极大地关注,它们在较大功率、高温、高压应用领域所发挥的作用也不是传统的硅器件所能比较的。尤其是伴随着新能源、5G等新兴高科技领域对高性能半导体材料的要求日益严格,第三代半导体材料注定会进一步大放异彩。
查看详情
时至今日,以碳化硅(SiC)和氮化镓(GaN)为代表的第三代半导体材料得到了极大地关注,它们在较大功率、高温、高压应用领域所发挥的作用也不是传统的硅器件所能比较的。尤其是伴随着新能源、5G等新兴高科技领域对高性能半导体材料的要求日益严格,第三代半导体材料注定会进一步大放异彩。
全球十大贵金属排行
全球十大贵金属排行
每种金属都有不同的价值,该价值要取决于金属的稀有性,提取难度和金属的特性。纵观历史,贵金属一直被当作货币来进行交易,而现在已成为一种投资形式,当你想到贵金属时,首先想到的应该是黄金和白银。尽管金银的价格也是非常昂贵,并已包含在十大最贵金属中。但其实还有其他比金银更有价值的金属。以下10种是2020年全球最昂贵的金属,让我们一起来看看吧。
查看详情
每种金属都有不同的价值,该价值要取决于金属的稀有性,提取难度和金属的特性。纵观历史,贵金属一直被当作货币来进行交易,而现在已成为一种投资形式,当你想到贵金属时,首先想到的应该是黄金和白银。尽管金银的价格也是非常昂贵,并已包含在十大最贵金属中。但其实还有其他比金银更有价值的金属。以下10种是2020年全球最昂贵的金属,让我们一起来看看吧。
高纯金属材料的应用和发展
高纯金属材料的应用和发展
高纯钨  纯度达到99.999%(5N)和99.9999%(6N)的纯钨材料,称之为高纯钨。高纯钨的总杂质元素含量应被控制在1ppm~10ppm(10-6~10-5)之间,对于某些特别杂质元素的含量,如放射性元素、碱金属元素、重金属元素和气体元素等还分别有特殊的要求。由于放射性元素U和Th具有a射线,在记忆回路中可引起“软误差”而影响电路的质量和性能,所以在高纯钨的杂质元素中,要求U和Th的含量应特别低,一般来说应低至1ppb(即1×10-9)以下,最低达到0.1ppb(1×10-10)。另外,高纯钨对于碱金属元素(K、Na、Li)的含量也分别有严格要求。高纯钨主要被制备成纯金属靶材或合金靶材,通过磁控溅射的方式得到符合要求的功能薄膜。由于高纯钨(5N或6N)具有对电子迁移的高电阻、高温稳定性以及能形成稳定的硅化物,在电子工业中以薄膜形式用作栅极、连接和障碍金属。高纯钨及钨硅、钨钛溅射靶材常被施以薄膜形式用于超大规模集成电路作为电阻层、扩散阻挡层、过渡层等以及在金属氧化物半导体型晶体管中作为门材料及连接材料等。现代电子、半导体、光伏产业的飞速发展,对材料特别是金属材料的纯度要求近乎苛刻完美。高纯钨由于其极高的性能表现而在其中扮演着十分重要的角色。高纯钼  纯度达到99.99%(4N)和99.999%(5N)的纯钼材料,称之为高纯钼。高纯钼的总杂质元素含量相应被控制在100ppm~10ppm(10-4~10-5)之间。和高纯钨一样,对于高纯钼中某些特别杂质元素的含量,如放射性元素、碱金属元素、重金属元素和气体元素等也分别有特殊的要求。由于高纯钼主要应用于靶材领域,所以一般要求U+Th和碱金属的含量十分低。由于高纯钼材料的实验开发较晚,工业化制造更是无从说起,其用途在几年前还往往被工业级或粉冶级的普通钼材料代替。然而,近年来半导体产业的突飞猛进以及高精密电子产品快速升级换代,大大促进了对基础材料更高更新的要求。和高纯钨一样,高纯钼主要被制备成纯金属靶材或合金靶材,通过磁控溅射的方式得到符合要求的功能薄膜。溅射的工作原理是用高速粒子轰击靶材,使靶材表面的金属原子脱离靶材,以薄膜的形式沉积到玻璃或其他基板上,最终形成复杂的配线结构。相对于普通钼靶而言,高纯钼溅射靶材由于其杂质含量极少、化学纯度很高,从而可形成更高品质的薄膜材料,现已广泛用于制造薄膜晶体管液晶显示器(TFT-LCD);半导体工业大规模集成电路的配线材料;太阳能工业新型薄膜系太阳能电池;以及其它高新材料领域。半导体等大型集成电路对金属材料的纯度要求极高,高纯钼由于其极优的性能表现而在现代电子、半导体、光伏产业中成为首选的高端优质材料。溅射靶材Sputter磁控溅镀原理  Sputter在辞典中意思为:(植物)溅散。此之所谓溅镀乃指物体以离子撞击时,被溅射飞散出。因被溅射飞散的物体附著于目标基板上而制成薄膜。在日光灯的插座附近常见的变黑现象,即为身边最赏见之例,此乃因日光灯的电极被溅射出而附著于周围所形成。溅镀现象,自19世纪被发现以来,就不受欢迎,特别在放电管领域中尤当防止。近年来被引用于薄膜制作技术效效佳,将成为可用之物。薄膜制作的应用研究,当初主要为BellLab.及WesternElectric公司,于1963年制成全长10m左右的连续溅镀装置。1966年由IBM公司发表高周波溅镀技术,使得绝缘物之薄膜亦可制作。后经种种研究至今已达“不管基板的材料为何,皆可被覆盖任何材质之薄膜”目的境地。而若要制作一薄膜,至少需要有装置薄膜的基板及保持真空状况的道具(内部机构)。这种道具即为制作一空间,并使用真空泵将其内气体抽出的必要。Sputter溅镀定义:在一相对稳定真空状态下,阴阳极间产生辉光放电,极间气体分子被离子化而产生带电电荷,其中正离子受阴极之负电位加速运动而撞击阴极上之靶材,将其原子等粒子溅出,此溅出之原子则沉积于阳极之基板上而形成薄膜,此物理现象即称溅镀。
查看详情
高纯钨  纯度达到99.999%(5N)和99.9999%(6N)的纯钨材料,称之为高纯钨。高纯钨的总杂质元素含量应被控制在1ppm~10ppm(10-6~10-5)之间,对于某些特别杂质元素的含量,如放射性元素、碱金属元素、重金属元素和气体元素等还分别有特殊的要求。由于放射性元素U和Th具有a射线,在记忆回路中可引起“软误差”而影响电路的质量和性能,所以在高纯钨的杂质元素中,要求U和Th的含量应特别低,一般来说应低至1ppb(即1×10-9)以下,最低达到0.1ppb(1×10-10)。另外,高纯钨对于碱金属元素(K、Na、Li)的含量也分别有严格要求。高纯钨主要被制备成纯金属靶材或合金靶材,通过磁控溅射的方式得到符合要求的功能薄膜。由于高纯钨(5N或6N)具有对电子迁移的高电阻、高温稳定性以及能形成稳定的硅化物,在电子工业中以薄膜形式用作栅极、连接和障碍金属。高纯钨及钨硅、钨钛溅射靶材常被施以薄膜形式用于超大规模集成电路作为电阻层、扩散阻挡层、过渡层等以及在金属氧化物半导体型晶体管中作为门材料及连接材料等。现代电子、半导体、光伏产业的飞速发展,对材料特别是金属材料的纯度要求近乎苛刻完美。高纯钨由于其极高的性能表现而在其中扮演着十分重要的角色。高纯钼  纯度达到99.99%(4N)和99.999%(5N)的纯钼材料,称之为高纯钼。高纯钼的总杂质元素含量相应被控制在100ppm~10ppm(10-4~10-5)之间。和高纯钨一样,对于高纯钼中某些特别杂质元素的含量,如放射性元素、碱金属元素、重金属元素和气体元素等也分别有特殊的要求。由于高纯钼主要应用于靶材领域,所以一般要求U+Th和碱金属的含量十分低。由于高纯钼材料的实验开发较晚,工业化制造更是无从说起,其用途在几年前还往往被工业级或粉冶级的普通钼材料代替。然而,近年来半导体产业的突飞猛进以及高精密电子产品快速升级换代,大大促进了对基础材料更高更新的要求。和高纯钨一样,高纯钼主要被制备成纯金属靶材或合金靶材,通过磁控溅射的方式得到符合要求的功能薄膜。溅射的工作原理是用高速粒子轰击靶材,使靶材表面的金属原子脱离靶材,以薄膜的形式沉积到玻璃或其他基板上,最终形成复杂的配线结构。相对于普通钼靶而言,高纯钼溅射靶材由于其杂质含量极少、化学纯度很高,从而可形成更高品质的薄膜材料,现已广泛用于制造薄膜晶体管液晶显示器(TFT-LCD);半导体工业大规模集成电路的配线材料;太阳能工业新型薄膜系太阳能电池;以及其它高新材料领域。半导体等大型集成电路对金属材料的纯度要求极高,高纯钼由于其极优的性能表现而在现代电子、半导体、光伏产业中成为首选的高端优质材料。溅射靶材Sputter磁控溅镀原理  Sputter在辞典中意思为:(植物)溅散。此之所谓溅镀乃指物体以离子撞击时,被溅射飞散出。因被溅射飞散的物体附著于目标基板上而制成薄膜。在日光灯的插座附近常见的变黑现象,即为身边最赏见之例,此乃因日光灯的电极被溅射出而附著于周围所形成。溅镀现象,自19世纪被发现以来,就不受欢迎,特别在放电管领域中尤当防止。近年来被引用于薄膜制作技术效效佳,将成为可用之物。薄膜制作的应用研究,当初主要为BellLab.及WesternElectric公司,于1963年制成全长10m左右的连续溅镀装置。1966年由IBM公司发表高周波溅镀技术,使得绝缘物之薄膜亦可制作。后经种种研究至今已达“不管基板的材料为何,皆可被覆盖任何材质之薄膜”目的境地。而若要制作一薄膜,至少需要有装置薄膜的基板及保持真空状况的道具(内部机构)。这种道具即为制作一空间,并使用真空泵将其内气体抽出的必要。Sputter溅镀定义:在一相对稳定真空状态下,阴阳极间产生辉光放电,极间气体分子被离子化而产生带电电荷,其中正离子受阴极之负电位加速运动而撞击阴极上之靶材,将其原子等粒子溅出,此溅出之原子则沉积于阳极之基板上而形成薄膜,此物理现象即称溅镀。
二维码

扫描二维码,关注公众号,了解更多前沿技术。

在线客服

版权所有: 湖南欧泰稀有金属有限公司      湘ICP备17001881号       网站建设:中企动力长沙